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* “Viruses here, viruses there, viruses everywhere”
Why and how we study viruses of microbes in the environment

* “So | got some genomes, now what ?”
Strengths and challenges of metagenomics for viral ecology

* “Should I kill or should | wait ?”
Targeted metagenomes reveal new aspects of virus-host dynamics
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Mcirobes rule the world JGI ;/;?
OUR MICROBIAL PLANET

Think microbes are bad guys? Think again.

The Microbial Engines That Drive
Earth’s Biogeochemical Cycles
Paul G. Falkowski,"* Tom Fenchel,>* Edward F. Delong**
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OUR MICROBIAL PLANET

Think microbes are bad guys? Think again.

The Microbial Engines That Drive
Earth’s Biogeochemical Cycles
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The human microbiome: at the
interface of health and disease
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Viruses of microbes are everywhere | JG[ (5/\9

Viruses of microbes

Human viruses
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Viruses of microbes

Human viruses

Picture: Fuhrman Lab
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Viruses of microbes

Human viruses
Seawater: 10%8/ml

Freshwater: 107-8/ml
Soil: 10™°/gdw

Picture: Fuhrman Lab
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* Viruses influence microbial community structure & diversity
* “Kill the winner” hypothesis
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Frede Thingstad, 2000, De Paepe et al, 2014
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* Viruses influence microbial community structure & diversity
* “Kill the winner” hypothesis
* Viruses act as lateral gene transfer agents
* Transduction(s), but also free DNA release, Gene Transfer Agent (GTA)

Donor cell Recipient cell

Chromosome

Chromosome

D

§ Transduction

Frost et al, 2005
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* Viruses influence microbial community structure & diversity

* “Kill the winner” hypothesis
* Viruses act as lateral gene transfer agents

* Transduction(s), but also free DNA release, Gene Transfer Agent (GTA)

* Virus alter host cell phenotype

* Integrated phages encoding toxins: lysogenic conversion

* Aucxiliary metabolic genes (AMGs)

Prochlorococcus
cell

09/18/19

* AMG examples:
- Photosystem
- Central C
- N/P/S metabolism
- Fermentation
(giant virus)

Breitbart et al, 2007
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Why study viral ecology ? JGI ¢
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* Viruses of microbes are important
- Virus-like particles are (highly) abundant v/
- Viral infections can strongly impact microbial communities v/

Recipient cell

“ é Transduction
4’ wa;wm

Prochlorococcus
cell

Progeny
viruses

Infecting
virus
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Challenges of viral ecology JGI %

* How can we study environmental viruses ?
- No universal marker gene (no 16S or 18S)
- Challenging to cultivate
- Needs cultivation-free “no-prior-knowledge required” approaches
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* How can we study environmental viruses ?
- No universal marker gene (no 16S or 18S)
- Challenging to cultivate
- Needs cultivation-free “no-prior-knowledge required” approaches

* Assemble viral genomes from (viral) metagenomes

Microbial metagenomes

Metagenome
assembly &
genome binning

Viral sequence
identification

DNA/RNA Shotgun

Enrichment in extraction sequencing

viral particle

S
Viral Metagenomes— — ﬁ —
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* Unprecedented exploration of viral diversity
- Now the primary source of new viral genomes

1,000,0001 - J Reference viral genomes (NCBI, RefSeq, All virus species)
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* Unprecedented exploration of viral diversity
- Now the primary source of new viral genomes

1,000,0001 (O Reference viral genomes (NCBI, RefSeq, All virus species)
(3 Viral genomes uncultivated (UViGs)
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* Unprecedented exploration of viral diversity
- Now the primary source of new viral genomes

1,000,001 ) Reference viral genomes (NCBI, RefSeq, All virus species)
(3 Viral genomes uncultivated (UViGs)
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* “So | got some genomes, now what ?”
Strengths and challenges of metagenomics for viral ecology
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Viral metagenome possibilities JGI ;/;7

* Standards to analyze, describe, and report UViGs

biotechnology OPEN PERSPECTIVE
Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh>*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’©, Jens H Kuhn8, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani'®»!1®, Clara Amid!?,
D 4 2 Azizl oth D Rosdonctoinld® Doosw Rasll Aszo Raioithozt16 D A 212 Dobhocca A
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* Standards to analyze, describe, and report UViGs
- Tool(s) available and broadly used
* Identification of virus sequences in (meta)genome assemblies
* Distribution and abundance of UViGs
* Functional annotation of UViGs

nature

biotechnology OPEN PERSPECTIVE

Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh3*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’ @, Jens H Kuhn®, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani!®!1®, Clara Amid!?,
D o 3 Azizl oth D Rovdaonctoinld®) Dooe Boxl 1500 Ao Daoithast16 D A al2 Dobhacca A
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* Standards to analyze, describe, and report UViGs
- Tool(s) available and broadly used

Free online platforms @ ,
with virus-dedicated tools -

09/18/19

* Identification of virus sequences in (meta)genome assemblies
* Distribution and abundance of UViGs
* Functional annotation of UViGs

https://ivirus.readthedocs.io
https://www.cyverse.org

https://kbase.us

biotechnology OPEN PERSPECTIVE

Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh3*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’ @, Jens H Kuhn®, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani!®!1®, Clara Amid!?,
D o 3 Az oth D Rovdaonctoinld®) Dooe Boxl 1500 Ao Daoithast16 D ochyonal2 Doabocca A g
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* Standards to analyze, describe, and report UViGs
- Tool(s) available and broadly used

* Identification of virus sequences in (meta)genome assemblies

* Distribution and abundance of UViGs

* Functional annotation of UViGs
- Tool(s) currently in development / being evaluated

* Taxonomic classification of UViGs =
* Quality estimation of UViGs % .
®

* In silico host prediction

—

biotechnology OPEN PERSPECTIVE

Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh3*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’ @, Jens H Kuhn®, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani!®!1®, Clara Amid!?,
D o 3 Az oth D Rovdaonctoinld®) Dooe Boxl 1500 Ao Daoithast16 D ccheonal2 Dobhocca A Do
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* Standards to analyze, describe, and report UViGs

- Tool(s) available and broadly used
* ldentification of virus sequences in (meta)genome assemblies
* Distribution and abundance of UViGs

Final result = viral genome with fuII
ecological/evolutionary context

* Quality estimation of UViGs
* In silico host prediction

biotechnology OPEN PERSPECTIVE

Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh3*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’ @, Jens H Kuhn®, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani!®!1®, Clara Amid!?,
D o 3 Azizl oth D Rovdaonctoinld®) Dooe Boxl 1500 Ao Daoithast16 D A ol2 Dobhocca A
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* Standards to analyze, describe, and report UViGs
- Tool(s) available and broadly used
* |dentification of virus sequences in (meta)genome assemblies
* Distribution and abundance of UViGs

Final result = viral genome with fuII
ecological/evolutionary context

* Quality estimation of UViGs
* In silico host prediction

But it’s not that simple (of course...)

Minimu Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh3*®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupovic’ @, Jens H Kuhn®, Rob Lavigne®, ] Rodney Brister®, Arvind Varsani!®!1®, Clara Amid!?,
D o s Azizl oth D RDoedonctainld® Dooe Rocl 1500 Ao Raoithoxt16 D o ol2 Dobhocca A
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* Sample-to-viral-sequence pipeline
- Methods still in development for many environments, e.g. soil

Towards optimized viral metagenomes
for double-stranded and single-stranded
DNA viruses from challenging soils

Gareth Trubl'’, Simon Roux®, Natalie Solonenko', Yueh-Fen Li',
Benjamin Bolduc', Josué Rodriguez-Ramos'*, Emiley A. Eloe-Fadrosh?,
Virginia I. Rich' and Matthew B. Sullivan'~

Microbial metagenomes o )= (s ) -

Metagenome
assembly &
genome binning
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DNA/RNA Shotgun
Enrichment in extraction sequencing

viral particles

Viral sequence
identification

Viral Metagenomes ==

Vs 10/ 12
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* Sample-to-viral-sequence pipeline
- Methods still in development for many environments, e.g. soil
- Viral sequence detection pipelines not foolproof

& frontiers penspecTvE
in Microbiology di: 10.3380/ i 2010, 00808
-]

The Promises and Pitfalls of Machine
Learning for Detecting Viruses in
Aquatic Metagenomes

Alise J. Ponsero’ and Bonnie L. Hurwitz!'2*

Department of Biosystemns Enginearing. The Liniversity of Arzons, Tucson, AZ, United States, * BIGS Institufs,
Tha University of Arzona, Tucson, AZ, United States

Microbial metagenomes — (i)

Metagenome
assembly &
genome binning

viral particles
: [ 4 fazconer
Viral Metagenomes — ‘ )= (s -

DNA/RNA Shotgun
Enrichment in extraction sequencing

Vs 10/ 12
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* Sample-to-viral-sequence pipeline
- Methods still in development for many environments, e.g. soil
- Viral sequence detection pipelines not foolproof
* Insilico Host prediction
- Still in active development, not fully mature yet
- Only provide information on a (small) subset of viruses

Total number of virus sequences
(O Total virus genomes (isolates)
800,000 _ _ _
(O Uncultivated virus genomes (UViGs) TF
600,000
~95% UViGs not linked|
400,000- .
to any specific host(s)
200,000+
- ~5% UViGs with
—_— . . . . : ALY .
2004 2006 2008 2010 2012 2014 2016 2018 nost(s) linkage
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* Sample-to-viral-sequence pipeline
- Methods still in development for many environments, e.g. soil
- Viral sequence detection pipelines not foolproof
* Insilico Host prediction
- Still in active development, not fully mature yet
- Only provide information on a (small) subset of viruses

Total number of virus sequences

(@ Total virus genomes (isolates)
800,000
ﬁ Lincultivated virlis acenomes (11V/i(3g) I

oV FEMS Microbiology Reviews, fuv048
H % JOURNALS o o fomere/fuy
§ investing in science R:;iewArﬁclemsr
< $
OXFORD P

REVIEW ARTICLE

Computational approaches to predict
bacteriophage-host relationships
Robert A. Edwards®?3, Katelyn McNair!, Karoline Faust*>:, Jeroen Raes*>¢ ~95°/° UV|GS nOt Ilnkedl

and Bas E. Dutilh?7:8:*
nature
biotechnology OPEN P E R S P E C T I V E

200.000- Minimum Information about an Uncultivated Virus
Genome (MIUVIG)

Simon Roux!®, Evelien M Adriaenssens?®, Bas E Dutilh>4®, Eugene V Koonin®, Andrew M Kropinski®,
Mart Krupov1c7® Iens H Kuhn8 Rob Lav1gne9 I Rodney Brlster5 Arvmd Varsani!®!1®, Clara Amid!?,
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* Sample-to-viral-sequence pipeline
- Methods still in development for many environments, e.g. soil
- Viral sequence detection pipelines not foolproof
* Insilico Host prediction
- Still in active development, not fully mature yet
- Only provide information on a (small) subset of viruses
* Virus activity / infectivity
- Virus sequence in metagenome # active (“infectious”) virus
- Stay for next talk !

e = I

TR LTIt Ty

from metagenomes | Simon Roux (Joint Genome Institute, US A sroux@Ibl.gov) |
3010

3:00—3:30 | Using stable isotopes to track viruses in soils | Gary Trubl (Lawrence
Livermore National Lab USA; Trubl1@linl.gov) | 200110

3:30-3:40 | Break

2o A A0 1L iFe Aeteetioe smel siimome se biscimmabesol Wathens Bhonagabees SRR 8
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* “Should I kill or should | wait ?”
Targeted metagenomes reveal new aspects of virus-host dynamics
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Viruses of Green Sulfur Bacteria

* Green Sulfur Bacteria Maureen Berg
- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

(C) unknown Chlorobiaceae (D) Chlorobium 04

0.3

Depth [m]

0.2

0.1

W
iS o
Depth [m]

9l 10 I 11
2013 Month 2014 2013 Month 2014

9 10 11

Bloom in anoxic layer, i.e. late summer when lake is stratified

09/18/19 Diao, Huisman, & Muyzer, 2018
e



Viruses of Green Sulfur Bacteria

JOINT GENO

* Green Sulfur Bacteria Maureen Berg
- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

(C) unknown Chlorobiaceae (D) Chlorobium 04

0.3

0.2

Depth [m]
Depth [m]

0.1

91 10 9 1 10
2013 Month 2014 2013 Month 2014

Bloom in anoxic layer, i.e. late summer when lake is stratified

Which viruses infect GSB ?

09/18/19 Diao, Huisman, & Muyzer, 2018




Viruses of Green Sulfur Bacteria

* Green Sulfur Bacteria
- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Maureen Berg

Yes because
abundant
host

Which viruses infect GSB ?

Active arms race ?

09/18/19 Howard-Varona et al., 2018




Viruses of Green Sulfur Bacteria J

* Green Sulfur Bacteria
- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Maureen Berg

Yes because
abundant
host

Yes because
strong
seasonal
variation

Which viruses infect GSB ?
Active arms race or temperate infections/latency ?

09/18/19

Howard-Varona et al., 2018



* Green Sulfur Bacteria
- Seasonal bloom in stratified lake

Viruses of Green Sulfur Bacteria J

JOINT GENO

Maureen Berg

- example: 16S profile in Lake Vechten

Yes because
abundant
host

Yes because

0201 Socey o iuidEcaaey g esned AL 1616 OPEN :'"E Uug = St ro n g

WM NAILIFE., COm/Sme] ] :
ORIGINAL ARTICLE 2 Y seasonal
Genetic and life-history traits associated with the a|| d on ..
distribution of prophages in bacteria variation

ie Touchon'*, Aude Bernheim'* and Eduardo PC Rocha'*

Mari
'Institul Pasteur, Microbial Evolutionary Genomics, Paris, France and *CNRS, UMR3525, Paris, France

Which viruses infect GSB ?

09/18/19

Active arms race or temperate infections/latency ?

Howard-Varona et al., 2018




Green Sulfur
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* Green Sulfur Bacteria in Trout Bog Lake

Green Sulfur

2" Bacteria
E (% of cells)
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o .
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JUne m— O ct
Trout Bog Lake - 2018

Maureen Berg
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complex microbial community

cell infected
‘ with a phage

In silico predlctlon “who could infect whom”
Targeted mini- metagenome “who actually mfects whom”

magnetic

+ - I plate

collection \

sequence microbe

June » Oct of interest

(Targeted Metagenome)

Trout Bog Lake - 2018




Virus-GSB dynamics in Trout Bog Lake JG[;\:/f

* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host

Abundance of GSB genome A and viruses

| 1 1 1 1 |

| 1 1 } I |
1,000 / I I I ™Y o
. | VN~ AVAL T
: : . ' SVae
d>) 10 ] | 1 1 1 |
o | 1 } I |
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3 o : o
N 8 Spring - ! — GSB genome A
® 0.1- 0 Summer ! : - GSB virus 1-15
£ m Fall | - GSB virus 1-51
o ] | | 1 1 1
z

2005 2007 2008 2009 20122013 2018
Sampling date
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host

Abundance of GSB genome A and viruses Abundance of GSB genome B and viruses
| 1 1 1 | | 1 1 1 | 1 1
| 1 1 1 | | 1 1 1 | 1 1
1,000 / I I I ™M . 1,0001 _ . 1 I I Lo i
o [ N M : e
(o)) ®
g s . | Ry S M A : I
d>) 10 1 1 1 1 1 10- 1 1 1 ﬂ 1 1 +|
o | 1 1 | | 1 1 1 | 1 1
et I I I Lo : % I I I L
1 i 1 1 1 1 1 1 1 1 1 1
ﬁ @ Spring ! ! — GSB genome A ! ! — GSB genome A
g 0.14 OSummer | . — GSB virus 1-15 011 | . GSB virus 1-33 |
€ m Fall - | — GSB virus 1-51 - - — GSB virus 1-4.2
o) ] | | 1 1 1 1 | 1 1 1 1
2005 2007 2008 2009 20122013 2018 2005 2007 2008 2009 20122013 2018
Sampling date Sampling date
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Virus-GSB dynamics in Trout Bog Lake JGI &

JOINT GENOME INSTITUTE

DG

J

* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host

Abundance of GSB genome A and viruses Abundance of GSB genome B and viruses
i : : I I/‘I : I I T
1,000-/ i I I s A 1,0001 _ I I Lo i
1 1 1 ] 1 | 1 1 1 | 1 1
> /A'. M‘" S JW: : : L w».d\//
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N O Spring ! — GSB genome A ! ! — GSB genome A !
g 017 DO Summer | | — GSB virus 1-15 011 . GSB virus 1-33 |
€ m Fall | | — GSB virus 1-51 | | — GSB virus 1-4.2 1
e} 1 | | 1 1 1 1 1 1 1 1 1
Z WHMMHWWW
2005 2007 2008 2009 20122013 2018 2005 2007 2008 2009 20122013 2018
Sampling date Sampling date

s Stable association ? Arms race ?
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
Abundance of GSB genome A and viruses Abundance of GSB genome B and viruses

1,0007 i
e A
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2007 o N N °oo — 1 kb @ Hypothetical protein
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ed coverage —
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GSB virus 1-51 and 1-15: virtually unchanged between 2005 and 2018

oo Stable association 4 Arms race ?
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
Abundance of GSB genome A and viruses Abundance of GSB genome B and viruses

L/ SIS VYRS AT o B P A S S N O O B
PN e D A e

10- +l /
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@4 TG (@ q — @ 0¥ 4 el
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(O Structural protein () Other phage protein (@ Hypothetical protein 58% I 1100%
- 1 kb Nucleotide identity

GSB virus 1-33: Yearly replacement of ~ 1/3rd of the genome
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host

Abundance of GSB genome A and viruses Abundance of GSB genome B and viruses
:
1,000 r :
2 i\
dh, °
2 10, Closely related hosts
o n
2o Same environment
= ' [ n [
5 Why different infection types ??
) 2013 2018
2018 AR —
2007 ‘-DDDDG-U e bo ’(_J — 1kb @ Hypothetical protein 2017 22 == 2 .‘D«M »G> =~ ,CI S
J#M 20% 100% (JOther phage protein » TS — W‘»q —aE T O g1
2018 !-E%#Q Y HD 'Q.<_I Nucleotide identity [@Structural protein 2007 = — — o 'C] —
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations

0.0015{ = genomeA
= A -~ genomeB
©
>
o > — 4
g '? 2005
o @ 0.0010+
> a
2 | |
2 8 2005 2018[
o < 0.0005
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< < D007
2 2ofaT
In poosly o
0.0000 {oGara0g 22008 513
1 10 100
Coverage

09/18/19 Higher abundance (observed)
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* Green Sulfur Bacteria in Trout Bog Lake

JOINT GENOME INSTITUTE

- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations

0.0015{ > genomeA
= A -~ genomeB
(]
5 | > i
° = 2005
o @ 0.0010+
> &)
2 | |
2 S 2005 2018[
N 5 0.0005 -
m :
< F D007
2 2ofaT
008,
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1 10 100
Coverage
i
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Higher abundance (observed)

* Observed diversity should
scale with coverage
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations
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* Green Sulfur Bacteria in Trout Bog Lake
- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations

0.0015{ > genomeA
A -~ genomeB

o)

QO

s | >

(7)) i

S § 0.0010-

2 a)

» 3

(] ]

> (@)

= Ro)

S < 0.0005 -
o

2 pd

K=l

I

0.0000 - 2effma0g 2200

2005

* Observed diversity should
scale with coverage

* Ok for genome B (arms race)

2005

b008|

|
/2/018[ * Exception for genome A

- high coverage - low diversity

Coverage

208 - genome-wide sweep already
=8 reported
100 — host population ~ clonal

— |latent infections

09/18/19

Higher abundance (observed)




Host diversity as key for virus-host dynamics JGI

JOINT GENOME INSTITUTE

* Diverse host population

09/18/19 lllustration adapted from https://bigpictureeducation.com/fight-finish, © Glen McBeth




Host diversity as key for virus-host dynamics JGI \.?

JOINT GENOME INSTITUTE

* Diverse host population

——

Diverse host populatlon
* Variation in phage susceptibility between population members

‘ _-....

* Phage-resistant mutants can arise in natural populations
* Selection for new phage variants, co-diversification, arms race
* Dynamics associated with lytic phages or short latency
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* Low diversity host population

Low diversity host poulation:
* Most population members have similar susceptibility

* Resistant mutants less likely to arise before ~100% infection rate
* Selection for temperate / long latency period phages
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* Low diversity host population

Low diversity host population:
* Most population members have similar susceptibility
* Resistant mutants less likely to arise before ~100% infection rate

* Selection for temperate / long latency period phages
g

Theoretical model work In progress
(i.e. is this even plausible ?)
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* Low diversity host population

Low diversity host population:
* Most population members have similar susceptibility
* Resistant mutants less likely to arise before ~100% infection rate

* Selection for temperate / long latency period phages

% P

Theoretical model work in progress
(i.e. is this even plausible ?)
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Host population genetic diversity is likely
a critical driver of virus-host dynamics

09/18/19 lllustration adapted from https://bigpictureeducation.com/fight-finish, © Glen McBeth
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* Metagenomic framework for virus discovery
* We (start to) understand how to find them
* Metagenomics is foundational for virus ecogenomics
* Standards for virus discovery, analysis, and report
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* We (start to) understand how to find them
* Metagenomics is foundational for virus ecogenomics
* Standards for virus discovery, analysis, and report

* Host interactions are key to understand viruses
* Host linkage is the #1 challenge ,
* Virus-host interactions comes in “all sizes, shapes, and flavor”
* Will require large integrative approaches (multi ‘omics + modeling + ...)
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Conclusion

* Metagenomic framework for virus discovery
* We (start to) understand how to find them
* Metagenomics is foundational for virus ecogenomics
* Standards for virus discovery, analysis, and report

* Host interactions are key to understand viruses
* Host linkage is the #1 challenge
* Virus-host interactions comes in “all sizes, shapes, and flavor”
* Will require large integrative approaches (multi ‘omics + modeling + ...)

* Lots of discovery to be made !!!
* Completely new type of viruses ?
* New mechanisms for host cell reprogramming ?
* New defense/counter-defense mechanism(s) ?
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474 N VEG Viral EcoGenomics
! & Applications

' *:“*«"; ' Symposium hosted by the DOE Joint Genome Institute

R ——

Genomlcs df Ehergy &

Environment Meetlng

“March 22'-26, 2020’ ‘-

=+Bakland M4 et Clty—Genter e i~ e <~ R Eddy Mart
R e e Doudna Rubin Krupovic

Workshops:

*usermeeting.jgi.doe.gov £M' !&,g&ég

DOE Systems Biology Knowledgebase

Registration opens October 1, 2019 MycoCosfﬁ%;

THE FINNGAL QENOMICS RESODURCE

PhycoCosm:*

THE ALGAL GENOMICS RESOURCE




Tools to Explore Microbial Genomes &
Microbiomes: MGM Workshop @JGI JGI

JOINT GENOME INSTITUTE
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Five-day hands-on workshop includes seminars and extensive tutorials on how to
use the Integrated Microbial Genomes & Microbiomes (IMG/M) system for
comparative analysis of isolate genomes and metagenomes.

November 4 - 8, 2019 in Berkeley, California

Limited to 40 participants mgm.jgi.doe.gov

Register now!




Community Science Program (CSP) G

New Investigator Call for Proposals

\7
A

JOINT GENOME INSTITUTE

* CSP New Investigator Call
emphasizes the generation of pilot
data to assess the feasibility of a
large-scale CSP proposal
submission

Deadline
September 26
bit.ly/NewP12020

Contact:
Susannah Tringe
SGTringe@Ibl.gov

73
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* Prokaryote Super Program & JGI

Maureen Berg

Emiley Eloe-Fadrosh (.a

poce Visel JGI X JOINT GENOME INSTITUTE
Nikos Kyrpides (6.\ UNITED STATES DEPARTMENT OF ENERGY
Natalia N. lvanova -

David Paez-Espino
Rex Malmstrom

<
, A
Danielle Goudeau

BERKELEY LAB

* MacMahon Lab @ UW-M

* Charles Olmsted WISCONSIN

¢ Trlna MaC Mahon UNIVERSITY OF WISCONSIN-MADISON
* Bryantlab @ Penn State ‘o3 PennState
* Jennifer Thweatt 3y Eberly College

* Don Bryant of Science

04/06/17
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